Using a MCP23008 with the Microbit.

This PDF will show you how to add 8 extra I/O pins to the Microbit using an 8 port MCP23008
chip, that communicates over 12C 2 wire protocol using pins 19 & 20 along with 3V and GND.

You can buy the MCP23008 chips on eBay for around £2.25 including postage.

PDIP/SOIC

SCL —01 ~ 180 =— VDD
SDA ==[]2 170 == GP7
A2 —=[3 160 == GP6

Al —4 8 150 == GP5

A0 —»[05 & 140 == GP4
RESET—=016 & 130 <= GP3
NC —7 = 120 == GP2
INT =—[]8 11 0 <= GP1
Vss —=9 100 == GPO

The pins labelled GPO to GP7 can be configured as inputs or outputs. An LED is attached to GPO in
picture below. The resistor is a 220 ohm. We’re using a Pimoroni breakout board.

We’ll be using MicroPython and the Mu editor.

This micropython code will scan the I2C bus , find devices and print their port number, if you press
button A.

from microbit import =*

start = 0x08
end = 0x77

while True:
display.show(Image.ARROW W)
if button a.was pressed():
display.show(Image.MEH)
print("Scanning I2C bus...")
for i in range(start, end + 1):
try:
i2c.read(i, 1)
except OSError:
pass
else:
print("Found: [%s]" % hex(i))
print("Scanning complete")
print("Magnetometer [0x0e] Accelerometer [0x1d]")
sleep(10)

The onboard magnetometer is at [0x0Oe] and the accererometer at [0x1d] - If you have the
MCP23008 chip connected correctly you should also see “Found: [0x20]” in the scan results.

This code will blink the LED:

from microbit import =*
i2c.write(0x20, b'\x00\x00') # set all pins as outputs

while True:
i2c.write(0x20, b'\x09\x01"')
sleep(500)
i2c.write(0x20, b'\x09\x00"')
sleep(500)

The 0x20 refers to the I2C bus address of the MCP23008 chip. The x09 refers to the GPIO pins.
Then we send a value between 00 and FF (hexadecimal, 0 to 255 decimal) to the chip. 00 would
turn off all 8 pins. FF would turn on all 8 pins. If you think of the pins with LEDs connected as 8
digit binary 00000000, then to turn on the LED on the right we send 00000001 (x01 in hex) and to
turn on the LED on the left we’d send 10000000 (x80 in hex).

Converter here: https://www.binaryvhexconverter.com/binary-to-hex-converter

The table on the next page shows all the functions you can send to the MCP23008. You can
download the full PDF datasheet for the chip from
https://www.mouser.co.uk/datasheet/2/268/21919b-65915.pdf

https://www.binaryhexconverter.com/binary-to-hex-converter
https://www.mouser.co.uk/datasheet/2/268/21919b-65915.pdf

TABLE 1-3: CONFIGURATION AND CONTROL REGISTERS

R:ﬂ:?’ Aﬂiﬁfs bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 PezﬁfT
IODIR 00 07 106 105 104 103 102 101 00 [1111 1111
IPOL 01 IP7 IP6 IP5 P4 1P3 P2 1P1 PO | 0000 0000
GPINTEN 02 GPINT7 | GPINT6 | GPINT5 | GPINT4 | GPINT3 | GPINT2 | GPINT1 | GPINTO | 0000 0000
DEFVAL 03 DEF7 | DEF6 | DEF5 | DEF4 | DEF3 | DEF2 | DEF1 | DEFO |0000 0000
INTCON 04 loc7 | 1oce | 1ocs | loca | 1oc3 | 1oc2 | 1oct I0C0 | 0000 0000
IOCON 05 = = | SREAD | DISSLW | HAEN®* | ODR | INTPOL | — |00 oo0o0-
GPPU 06 PU7 PU6 PUS5 PU4 PU3 PU2 PU1 PUO | 0000 0000
INTF 07 INT7 INT6 INT5 INT4 INT3 INT2 INTA INTO | 0000 0000
INTCAP 08 ICP7 ICP6 ICP5 ICP4 IcP3 ICP2 ICP1 ICPO | 0000 0000
GPIO 09 GP7 GP6 GP5 GP4 GP3 GP2 GP1 GPO | 0000 0000
OLAT 0A oL7 oL6 oL5 oL4 oL3 oL2 oL1 OL0 | 0000 0000

* Not used on the MCP23008.

So now we have managed to turn a single LED on and off. Let’s now look at some code to cycle
through 4 LEDs connected to the pins GPO, GP1, GP2 and GP3 via resistors to GND.

0x20 is I2C bus address of MCP23008 chip. x09 is GPIO register
Sending FF to x09 turns on all pins. Sending 00 = all off.
Sending 1/2/4/8/10/20/40/80 turns on pins 0 through 7
from microbit import *
i2c.write(0x20, b'\x00\x00') # set all pins as outputs
sequence = ['0x01','0x02','0x04"','0x08"','0x04"','0x02"']
s = b'\x09"'
while True:
for i in range(0, 6):

result = bytes([int(sequence[i])])

s += result

print(s)

i2c.write(0x20, s)

sleep(100)

i2c.write(0x20, b'\x09\x00"')

s = b'\x09"'

The code above does a basic “Knight Rider” style backwards and forwards LED cycle, using 4
LEDs.

We can also do it with 8 LEDs.

..I\'I.l.l.l.l.
. . . .
LI I A " s 0 e U

0x20 is I2C bus address of MCP23008 chip. x09 is GPIO register

Sending FF to x09 turns on all pins.

Sending 00 =

all off.

Sending 1/2/4/8/10/20/40/80 turns on pins 0 through 7

from microbit import *
i2c.write(0x20,

sequence =
['0x01','0x02','0x04"','0x08"','0x10"','0x20",
x20','0x10','0x08','0x04"','0x02"']
s = b'\x09"'
while True:

for i in range(0, 14):

result = bytes([int(sequence[i])])
s += result

print(s)

i2c.write(0x20, s)

sleep(100)
i2c.write(0x20,
s = b'\x09"'

b'\x09\x00")

b'\x00\x00') # set all pins as outputs

'0x40','0x80','0x40','0

Mu

2 X BB =) QQ)C &) 2O

New Load Save Flash Files Repl Zoom-in Zoom-out Theme Check Help Quit
pir-test.py | keypad2.py | kptest1.py | i2escan.py | i2c-test1py | i2c-test2.py I keypad.py ‘ i2c-testz.py * B ‘
1 # Ox20 is I2C bus address of MCP23008 chip. x09 is GPIO register
2 turns on all pins. Sending @@ = all off.
3 /10/20/40/80 turns on pins @ through 7
"
5 from microbit import *
6 i2c.write(@x28, b'\x00\x08') # set all pins as outputs
7 sequence = ['@x01','0x@2"','Gx04','0x08','0x10",'Gx20",'0x40"',"'0x80", 'Gx40",'0x20"',"'0x10", 'Gx08",'Ox64 ', '0x02"]
s s = b'\x@9'
9
w0 while True:
1 for i in range(@, 14):
2 result = bytes([int(sequencel[i])])
13 s += result
" print(s)
15 i2c.write(@x20, s)
16 sleep(l0@)
17 i2c.write(8x20, b'\x@9\x08")
18 s = b'\x@9'

